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Comparative molecular field analysis (CoMFA) combined with var-
ious physicochemical parameters were used to develop three-
dimensional quantitative structure—transportability relationships
(3-D QSTR) to predict membrane flux for 108 aromatic and heteroar-
omatic compounds through polydimethylsiloxane (PDMS) mem-
branes in isopropyl alcohol (IPA). Sybyl, a comprehensive compu-
tational molecular modeling package, was used to analyze the data.
Optimized molecular models were selected using molecular model-
ing techniques. Partial least-squares (PLS) regression combined
with crossvalidation or bootstrapping was used as the statistical
method to establish the predictive models. Prediction was good for
the steady-state flux using both steric and electrostatic field descrip-
tors combined with a functional group classification technique. Pre-
dictive ability was substantially increased in a model using CoMFA
descriptors along with log mole fraction solubility for the penetrants
in isopropanol, a hydrophobic term, f, .., which is used to estimate
the partition coefficient between cyclohexane and water, and the
addition of an intramolecular hydrogen bonding (/HB) term. The
crossvalidated r* and the conventional 7 for this model were 0.951
and 0.973, respectively. Excellent predictions are demonstrated for
the membrane flux of the compounds both inside and outside the
data domain.

KEY WORDS: comparative molecular field analysis; three-
dimensional quantitative structure-transportability relationships;
membrane diffusion prediction; molecular modeling; partition coef-
ficient; solubility; partial least squares.

INTRODUCTION

Conventional quantitative structure—activity relation-
ship (QSAR) techniques possess several limitations includ-
ing their applicability only within narrow compound families
of similar chemical structure; the lack of pertinent data
needed to set up the QSAR equations; the use of only a
relatively small number of predictive parameters, leading to
the problem of collinearity due to the limitations of classical
statistical methods; and the inability to differentiate stereo-
isomers, conformations, and even substitution positions (1-
3). The usefulness of the QSAR technique for drug design
and in other fields will increase considerably if these limita-
tions can be overcome.
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Report

Comparative molecular field analysis (COMFA), devel-
oped by Cramer and others (4), is one of the most promising
new approaches in the three-dimensional (3-D) QSAR field.
This approach is based on the fact that the most relevant
calculable property values are dependent on shape and on
two additional observations: (i) Molecular interactions
which produce an observed biological effect are usually non-
covalent; and (i1) molecular mechanics force fields, most of
which treat noncovalent interactions only as steric and elec-
trostatic forces, can account precisely for a great variety of
observed molecular properties (5). It combines partial-least
squares (PLS) regression, factor analysis, crossvalidation,
and bootstrapping validation methods to regress hundreds of
field columns against activities (2,5,6). Recent reports of
CoMFA applications include the study of the effect of shape
on binding affinities of 21 steroids to corticosteroid- and tes-
tosterone-binding globulins (7), quantitation of the effect of
structural change on carbonyl addition for 11 carbonyl com-
pounds (8), and correlation of binding affinities of 37 com-
pounds to the benzodiazepine receptor inverse agonist site
).

It has become better appreciated in recent years that the
pharmacological activity of a drug molecule depends not
only on its affinity for a target receptor but also on its trans-
portability to the biophase. The study of the relatively new
area of quantitative structure—~transportability relationships
(QSTR) is now recognized as important, especially in drug
delivery research, where the prediction of penetration rate
through skin and other absorptive membranes would be an
extremely useful tool. While both the process and the con-
trolling parameters of passive diffusion have been widely
studied, the ability to predict the flux of a material through a
membrane has not been inordinately successful to this point
in time (10). It is obvious that the capability of predicting the
rate of diffusion through biological membranes would be
helpful not only for estimation of absorption rate and for
selection of the analogue with the best absorption character-
istics within a class of drugs but also for estimation of the
time course of the drug in the body if its elimination kinetics
are known.

The importance of the partition coefficient to the diffu-
sion process has long been recognized (11-13). It has been
shown that the relationship between the steady-state mem-
brane diffusion rates and the partition coefficient (14,15) can
be described in large part by hydrophobic parameters, such
as p and £ (16,17).

It has been observed that isomers with the same func-
tional group on different ring positions not only have differ-
ent diffusion rates, but also have significant differences in
solubility (16). It was also reported that there is a good re-
lationship between the steady-state flux and the log mole
fraction solubility of the penetrants (18,19).

This article introduces the use of the standard Tripos
force field (5.2) to build up a 3-D database and the use of
CoMFA to analyze these flux data in order to establish a 3-D
CoMFA QSTR model for prediction of flux through polydi-
methylsiloxane (PDMS) membrane material for a series of
aromatic and heteroaromatic organic compounds in an iso-
propanol solvent system (17,18,20,21). There are two addi-
tional aspects which need to be considered further to in-
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crease the predictive ability and to improve the goodness of
fit for the 3-D CoMFA QSTR models. The first is the con-
sideration of the actual concentration of a molecule in con-
tact with the membrane during the flux experiment. To do
this a descriptor for solubility was added to the models. The
second aspect is the addition of other important physico-
chemical descriptors such as the partition coefficient and
hydrogen bonding ability into the model.

MATERIALS AND METHODS
Experimental

Solubility Determinations

The solubility of each solid diffusant was determined in
triplicate using a procedure described by Hu and Matheson
(18).

Diffusion Studies

The determination of the steady-state flux of aromatic
and heteroaromatic compounds was described earlier by Hu
and Matheson (18).

Data Analysis

Molecular Modeling

Compounds from the flux data set including 32 benzene,
35 pyridine, 35 quinoline, and isoquinoline derivatives plus 6
other nitrogen-containing hetroaromatic compounds were
selected (18) to create a 3-D molecular structure database to
be utilized to overcome the inability of conventional QSAR
approaches to differentiate the effects of stereoisomers, con-
formations, and substituent positions on the prediction of
flux. All molecular models were constructed using the
SKETCH method in SYBYL Version 5.3 (2) on a Silicon
Graphics 4D120GTX Graphics Workstation. The standard
Tripos force field, Version 5.2 (2,22), using default tailor set-
tings was applied for all optimization procedures, unless oth-
erwise stated. After construction of the geometry of a mol-
ecule, the molecular energy of the structure was minimized
using the CLEAN UP procedure with MAXIMIN?2 followed
by a DYNAMICS run without electrostatics and one more
energy minimization with MAXIMIN2. The GAST-HUCK
molecular charge calculation method was used for the entire
data set. To be certain that an optimal conformer was ob-
tained, the systematic conformational SEARCH was per-
formed for each molecule with side chains. The torsional
space of a side chain was searched at 10° increments. The
final structure was minimized once more using MAXIMIN2.

Molecular Alignment

The following alignment rules are illustrated by struc-
tures. A through E in Fig. 1. Benzene was chosen as the
reference molecule and placed at the origin and in the x-y
plane. The atoms at positions 1, 3, and 5 of the benzene ring
were selected as the reference atoms. These are fitted by the
remaining molecules in the data set using the following cri-
teria: (i) If there was no functional group attached to the
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Fig. 1. lllustration of alignment rule 1. A is the reference benzene
molecule with its three reference atom positions. B—E are examples
of fitted molecules with their fitted atom positions. All these fitted
molecules were superimposed on the reference molecule using the
least-squares method.

heterocyclic ring system, the heteroatom was designated the
prime or position 1 atom and was fitted to the reference
carbon atom at position 1; (ii) if there was only one func-
tional group, the aromatic carbon atom connected to the
functional group was selected as the prime atom and was
fitted to the reference carbon atom at position 1; (iii) if there
were two or more functional groups, the aromatic carbon
atom connected to the functional group with the greatest
effect on flux, based on its flux fragmental value as shown in
Table I (18), was selected as the prime atom; and (iv) since all
the molecules in the data set had at least one six-membered
aromatic ring, the six-membered ring was aligned with the
reference benzene ring as just described, but with the added
proviso that the arrangement also attempted to align any
bulky portion of the aligned molecule in the direction of
carbon atoms 4 and 5 on the reference molecule. If possible,
any functional group which was not in the x—y plane was
arranged in the minus z direction. After these consider-
ations, all the conformers were individually least-squares fit
to the reference molecule using the FIT option in the COM-
PARISON menu of SYBYL Version 5.3.

CoMFA

CoMFA was performed using the QSAR mode of
SYBYL Version 5.32. A field was calculated for benzene, the
penetrant with the fastest flux in the data set, in a region
where the dimensions ranged from — 14.0 to + 14.0 along the
x and the y axes and from — 10 to + 10 along the z axis. Such
a large region is used so that larger molecules can be fit in
later work. The spacings were 2 A along the axes and the
probe atom possessed the van der Waals properties of an sp’
carbon and a probe charge of + 1. The region was also used
for the field calculations of all the compounds of interest.
The maximum energy for both the steric and the electrostatic
fields was set at the default value of 30 kcal/mol. The re-
maining parameters were also set at the default values. Both



Prediction of Polydimethylsiloxane Membrane Flux in Isopropanol

259

Table I. Classification of Functional Groups by Fragmental Values and Ring System Indicators

Functional group classification

Ring system classification

Ring
Subgroup Functional groups® Fragmental value system Compounds
1 Fluoro, alkyl, chloro —0.15t0 0 1 Benzene derivatives
2 Ether, ester, ketone, —1.00tp —0.28 2 Pyridine derivatives
aldehyde

3 Nitro —0.95 (benzene 3 Quinoline, isoquinoline, py-
nucleus) rimidine, and indole de-
—0.99 (pyridine rivatives and 2-quinoxali-
nucleus) nol and acridine

4 Hydroxy, amino, car- —2.07to —1.06

boxylic acid

¢ Arranged in order of their magnitudes.

the seric and the electrostatic fields for each conformer in the
database were calculated and stored automatically into a
QSAR table, which was organized so that each row corre-
sponded to a molecular model in a Sybyl data base and a
column corresponded to a steric or an electrostatic interac-
tion energy.

Statistics

PLS and the crossvalidation method were used to ana-
lyze the CoMFA results. The minimum sigma value was set
to 1 and the crossvalidation group was set to 10 for any PLS
run combined with crossvalidation. For any final PLS run
the minimum sigma value was set to zero. In order to im-
prove the CoMFA results, the overall data set was divided
into subgroups. A compound was placed in a subgroup based
on the contribution of the substituent fragmental coefficient
for calculating the steady state flux (18). The data set was
classified into four subgroups as shown in Table I. The third
subgroup was composed of compounds containing one or
more nitro groups. These were classified into a separate sub-
group because of apparent anomalous transport behaviors of
these compounds. If a compound had multiple functional-
ities falling into more than one subgroup, it was placed into
the subgroup with the highest absolute fragmental value. For
example, 2-amino-4,6-dimethylpyridine was placed in sub-
group number 4. Each of the subgroup indicators was mul-
tiplied by a factor of 100 in order to weight the field columns
correctly.

In any PLS run combined with crossvalidation, the
number of components was added until the best predictive
model with the highest crossvalidated r was obtained. Then,
a PLS run without crossvalidation was carried out, using the
optimum number of components obtained from the best pre-
dictive model, in order to obtain the final model. This was
used to generate fitted values, residual values for all com-
pounds in the PLS data set, relative contributions of the
predictors in the model, the conventional /* value, and the F
value for the model. This final model was used to predict the
target properties of the compounds which were not included
in the PLS data set.

In order to test the predictive ability of each 3-D model,
two sets of 8 compounds inside the data domain were ran-
domly drawn from among the 102 benzene, pyridine, quin-

oline, and isoquinoline derivatives in the original data set. In
each case, the test compounds were removed from the
model and the model was recalculated prior to predicting the
logarithm of steady-state flux, logJ/,;, of the test compounds.
Another set of 6 compounds considered to be outside of the
data domain, because they were different nitrogen-contain-
ing ring systems than the 102 compounds above, was utilized
to test the predictive ability of the models for compounds
outside the data set.

Based on the CoMFA model, a logMFS; term, repre-
senting the logarithm of solubility on the mole fraction scale
for the diffusant in pure IPA, along with the steric and elec-
trostatic fields was used to correlate the log steady-state
flux. Each of the log MFS,; values was multiplied by a factor
of 100 in order to weight the field columns correctly. The log
MFS, values for the 108 compounds are listed in Table II.

A finex term, representing the partition coefficient (23),
was added to the above model and is also listed in Table II.
The values of f,., for all compounds in the data set were
calculated based only on their substituted fragments. The
ring systems were not included in the calculation in the orig-
inal approach (15). Therefore, the benzene, pyridine, and
quinoline derivatives will have the same values for the same
functional groups regardless of the ring system. It is obvious
that the benzene, pyridine, and quinoline ring systems are
different in terms of partitioning ability and have different
values of partition coefficient or f.,. The same situation
applies to their derivatives. In order to make sense of the
fenex values for any derivative in the data set, an indicator
was assigned to the compounds based on their ring system
(Table I). The ring systems outside the data domain were
placed in the quinoline system because they have either a
large ring size or two aromatic nitrogens and probably have
lower f.,x values than either the benzene or the pyridine
systems. Each of the ring system indicators and f_;,., values
was multiplied by a factor of 100 in order to weight the field
columns correctly. The functional group classification tech-
nique was not applied in this analysis because of the use of
the ring system indicators.

An intramolecular hydrogen bonding indicator was
added to the final 3-D model. The compounds in the data set
with the ability to intramolecularly hydrogen bond are listed
in Table II. The intramolecular hydrogen bonding indicator
was multiplied by a factor of 100 in order to correctly weight
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Table II. Experimental Flux Data and Fitted Flux Data and Their Residuals for the 3-D Predictive Models

CoMFA, CoMFA,
CoMFA, Subgroup 100«log MFS,, 100+log MFS;,
Obs.# Compounds Indicators, Ring Indicators, Ring Indicators,
100+log MFS; lOO*fChex 100sf ., . . 100+/HB
log MFS,- fchex Expt. logJgsiCal.logJssi Residual Cal.logJssi Residual Cal .logJssi Residual
1 Benzene 0.0000 0.050 -0.2560 -1.000 0.744 -0.833 0.577 -0.575 0.319
2 Aniline 0.0000 -2.237 -1.7500 -1.883 0.133 -1.664 -0.086 -1.572 -0.178
3 Phenol -0.0250 -3.119 -1.5700 -1.905 0.335 -1.824 0.254 -1.782 0.212
4 Benzoic acid -0.6979 -3.030  -2.3155  -2.491 0.175 -2.520 0.205 -2.485 0.170
5 Nitrobenzene 0.0000 -0.687 -1.7200 -1.188 -0.532 -1.465 -0.255 -1.331 -0.389
6 Acetophenone 0.0000 -0.637 -1.6400 -1.431 -0.209 -1.575 -0.065 -1.429 -0.211
7 Benzaldehyde 0.0000 -1.129 -1.4800 -1.424 -0.056 -1.389 -0.091 -1.292 -0.188
8 Ethylbenzene 0.0000 1.069 -0.5550 -1.006 -0.451 -0.880 -0.325 -0.821 0.266
9 Chlorobenzene 0.0000 0.783 -0.5400 -1.007 0.467 -0.743 0.203 -0.532 -0.008
10 Toluene 0.0000 0.542 -0.3880 -1.016 0.628 -0.919 0.531 -0.760 0.372
11 Fluorobenzene 0.0000 0.252  -0.2560 -0.999 0.743 -0.789 0.533 -0.539 0.283
12 tert-Butylbenzene 0.0000 2.096 -0.7530  -1.000 0.247 -0.929 0.176 -0.852 0.099
13 3-Hydroxybenzoic acid -0.8804 -5.989 -3.3086 -2.674 -0.634 -3.509 0.201 -3.608 0.300
14 3-Chlorotoluene 0.0000 1.485 -0.8370 -1.069 0.232 -0.679 -0.158 -0.537 -0.300
15 3-tert-Butylphenol -0.1322 -0.863 -1.9000 -2.138 0.238 -1.755 -0.145 -1.874 -0.026
16 4-Hydroxybenzoic acid -0.8948 -5.989 -3.5302  -2.679 -0.852 -3.535 0.004 -3.636 0.106
17 1-Fluoro-4-nitrobenzene 0.0000 -0.275 -1.6000 -1.199 -0.401 -1.369 -0.231 -1.220 -0.380
18 2-Hydroxy-5-nitropyridine -2.2700 -3.810  -3.7471 -3.670 -0.077 -3.775 0.028 -3.757 0.010
19 Butylbenzene 0.0000 2.096 -0.8590 -0.992 0.133 -1.005 -0.146 -0.895 0.036
20 m-Nitrobenzaldehyde -1.4763 -1.656  -2.4900 -2.487 -0.003 -2.777 0.287 -2.633 0.143
21 4-Aminoacetophenone -1.2757 -2.714 -3.0400 -3.070 0.030 -2.982 -0.058 -2.910 -0.130
22 4-tert-Butylbenzoic acid -0.9893 -0.774 -2.7588 -2.915 0.156 -2.735 -0.024 -2.738 -0.071
23 3-Hydroxypyridine -0.8477 -3.100 -2.6849  -2.594 -0.091 -2.523 -0.162 -2.620 -0.065
24 3,5-Dichloropyridine -0.9726 1.500 -1.4823 -1.849 0.367 -1.348 -0.134 -1.293 -0.190
25 4-tert-Butylpyridine 0.0000 2.090 -1.2272 -1.009 -0.218 -1.134 -0.094 -1.273 0.045
26 3-Aminopyridine -0.2845 -2.237 -2.6822  -2.127 -0.555 -2.012 -0.670 -2.123 -0.559
27 Pyridine 0.0000 0.020 -0.6951 -0.996 0.301 -0.977 0.282 -0.906 0.211
28 2-Aminopyridine -0.3099 -2.190 -1.8947  -2.136 0.241 -1.949 0.054 -2.016 0.121
29 2-Chloro-6-methoxypyridine 0.0000 0.740 -1.2112 -1.419 0.208 -1.072 -0.139 -1.305 0.094
30 2-Ethylpyridine 0.0000 1.070 -0.7179 -1.017 0.299 -1.112 0.394 -1.145 0.427
31 2-Chloropyridine 0.0000 0.760 -1.0808 -0.998 -0.083 -0.854 -0.226 -0.831 -0.250
32 2-Butoxypyridine 0.0000 1.550 -1.1554 -1.374 0.218 -1.263 0.107 -1.346 0.191
33 2-Fluoropyridine 0.0000 0.240 -0.8776 -0.990 0.113 -0.899 0.021 -0.838 -0.040
34 2-Methoxypyridine 0.0000 0.000 -0.8091 -1.405 0.595 -1.367 0.558 -1.336 0.527
35 2-Methoxy-5-nitropyridine -2.1175 -0.710  -2.6525 -3.008 0.355 -3.060 0.408 -3.091 0.439
36 2-Methoxy-5-aminopyridine 0.0000 -2.210  -2.2300 -1.930 -0.300 -1.939 -0.291 -2.194 -0.036
37 2-Methyl-5-ethylpyridine 0.0000 1.590 -0.8684 -1.039 0.171 -0.997 0.128 -1.154 0.285
38 Phenetole 0.0000 -0.110  -1.1100 -1.402 0.292 -1.379 0.269 -1.177 0.067
39 2-Hydroxypyridine -0.8165 -3.100  -2.4986  -2.556 0.057 -2.419 -0.080 -2.487 -0.012
40 2,4-Dihydroxypyridine -2.4535 -6.220  -4.2887 -3.951 -0.338 -4.290 0.001 -4.450 0.161
41 2-Amino-4-methylpyridine -0.7206 -1.670  -2.2276  -2.542 0.315 -2.158 -0.070 -2.210 -0.018
42 2-Amino-5-chloropyridine -1.4023 -1.450 -2.6247  -3.076 0.451 -2.426 0.199 -2.402 -0.223
43 2-Amino-5-nitropyridine -2.3820 -2.900 -3.7704 -3.766 -0.004 -3.651 -0.119 -3.623 -0.148
44 2,5-Pyridinedicarboxylic acid® -3.2840 -6.260  -5.2045 -4.748 -0.457 -5.309 0.104 -5.079 -0.125
45 Quinoline 0.0000 0.020 -1.4903 -1.079 -0.412 -1.276 -0.214 -1.470 -0.020
46 6-Methoxyquinoline 0.0000 0.000 -2.0969 -1.603 -0.494 -2.074 -0.023 -1.984 -0.113
47 3-Quinolinecarboxylic acid -2.8508 -3.120 -4.4101 -4.481 0.071 -4.529 0.119 -4.587 0.177
48 4,7-Dichloroquinoline -1.5670 1.500 -2.3913 -2.494 0.103 -2.274 -0.117 -2.144 -0.247
49 6-Methylquinoline 0.0000 0.540 -1.7474 -1.208 -0.540 -1.702 -0.045 -1.663 -0.084
50 8-Nitroquinoline -2.2366 -0.690  -3.3947  -3.141 -0.254 -3.196 -0.199 -3.467 0.072
51 8-Hydroxyquinoline? -1.5171 -2.401  -2.3583 -3.234 0.876 -2.928 0.569 -2.598 0.240
52 8-Aminoquinoline? -1.0701 -2.190 -2.2781 -2.869 0.591 -2.718 0.440 -2.451 0.173
53 5-Chloro-8-hydroxyquinoline? -2.2660 -2.360  -3.1655 -3.887 0.722 -3.414 0.248 -3.042 -0.124
54 5-Nitro-8-hydroxyquinoline? -3.1713 -3.810 -4.2195 -4.525 0.305 -4.625 0.406 -4.258 0.038
55 4-Methoxy-2-quinolinecarboxylic
acid® -3.0809 -3.140 -4.6171 -4.721 0.104 -4.840 0.223 -4.391 -0.226
56 6-Quinolinecarboxylic acid -3.0223 -3.120  -4.6724 -4.625 -0.047 -4.612 -0.060 -4.771 0.099
57 2-Hydroxy-4-methylquinoline -2.4547 -2.580 -3.8755 -4.175 0.299 -4.118 0.242 -4.121 0.246
58 6-Aminoquinoiine -1.0013 -2.190  -3.0606 -2.918 -0.143 -3.010 -0.051 -2.960 -0.101
59 3-Aminoquinoline -0.6925 -2.190 -2.9338 -2.663 -0.271 -2.788 -0.145 -2.837 -0.097
60 2-Hydroxyquinoline -2.2111 -3.100  -3.8125 -3.931 0.118 -3.906 0.094 -3.800 -0.013
61 4-Hydroxyquinoline -1.5317 -3.100 -3.6878  -3.258 -0.430 -3.188 -0.500 -3.541 -0.147
62 6-Nitroquinoline -2.5935 -0.690 -3.6146 -3.546 -0.069 -3.728 0.113 -3.693 0.078
63 8-Quinolinecarboxylic acid® -2.9393 -3.120  -4.2129  -4.444 0.231 -4.240 0.027 -4.001 -0.211
64 4-Quinolinecarboxylic acid -2.8268 -3.120  -4.5178  -4.325 -0.193 -4.236 -0.282 -4.555 0.037
65 Butylphenylether 0.0000 1.559 -1.2500 -0.973 -0.277 -1.059 -0.191 -0.914 -0.336
66 Anisole 0.0000 -0.022  -1.0300 -1.402 0.372 -1.295 0.265 -1.067 0.037
67 m-Xylene 0.0000 1.244 -0.5800 -1.077 0.497 -0.894 0.314 -0.776 0.196
68 Methylbenzoate 0.0000 0.112  -1.4600 -1.427 -0.033 -1.352 -0.108 -1.435 -0.025

69 6-Methoxy-8-nitroquinoline -3.1675 -0.710 -4.3323 -3.976 -0.356 -3.965 -0.367 -4.436 0.103
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Table II. Continued
CoMFA, CoMFA,
CoMFA, Subgroup 100+log MFS,, 100+l0g MFS,
Obs.# Compounds Indicators, Ring Indicators, Ring Indicators,
100+log MFS; 100%f ., 100«f ., . . 100+/HB
log MFS;  f .y Expt. logls;iCal.log)esi Residval Cal.loglssi Residual Cal .logJssi Residual

70 Propiophenone 0.0000 -0.110  -1.6300  -1.427 -0.203 -1.522 -0.108 -1.561 -0.069
71 m-Anisaldehyde 0.0000 -0.991 -2.0900 -1.469 -0.621 -1.564 -0.526 -1.849 -0.241
72 Methyl-3-methylbenzoate 0.0000 0.814 -1.4300 -1.491 0.061 -1.294 -0.136 -1.417 -0.013
73 Ethylparaben -0.6983 -2.320 -2.6900  -2.651 -0.039 -2.571 -0.119 -2.471 -0.219
74 3-Pyridinecaboxaldehyde 0.0000 -0.850  -1.8232  -1.425 -0.398 -1.527 -0.297 -1.772 -0.051
75 3,5-Lutidine 0.0000 1.060 -0.9487 -1.073 0.125 -1.083 0.134 -1.145 0.196
76 5-Chloro-3-pyridinol -1.0605 -2.360 -2.6211 -2.808 0.187 -2.498 -0.123 -2.577 -0.045
77 Nicotinic acid -2.3830 -3.120  -3.7595  -3.897 0.138 -3.640 -0.120 -3.905 0.145
78 4-Picoline 0.0000 0.540 -0.8447 -1.019 0.174 -1.139 0.294 -1.167 0.323
79 3-Acetylpyridine 0.0000 -0.610  -1.9918 -1.416 -0.576 -1.555 -0.436 -1.909 -0.083
80 6-Hydroxynicotinic acid -3.2757 -6.240  -5.1057  -4.686 -0.420 -5.173 0.067 -5.451 0.345
81 Picolinic acid® -1.7595 -3.120 -3.2816 -3.368 0.087 -3.224 -0.058 -2.903 -0.379
82 6-Choronicotinic acid -1.5935 -2.380  -3.0980 -3.263 0.165 -3.023 -0.075 -3.290 0.192
83 Ethylnicotinate 0.0000 0.330 -1.5296 -1.387 0.143 -1.390 -0.139 -1.414 -0.116
84 Lepidine 0.0000 0.540 -1.8529 -1.106 -0.747 -1.423 -0.429 -1.733 -0.120
85 8-Hydroxyquinaldine? -1.4486 -2.417  -2.3752  -3.170 0.795 -2.848 0.473 -2.576 0.201
86 2-Chlorolepidine -0.9666 1.280 -2.2996 -2.055 -0.245 -2.127 -0.173 -2.055 -0.244
87 8-Nitroquinaldine -2.6840 -0.170  -3.8269  -3.519 -0.308 -3.257 -0.570 -3.644 -0.183
88 4-Aminoquinaldine -1.1561 -1.670  -3.4809 -2.977 -0.504 -2.822 -0.658 -3.259 -0.222
89 6-Methoxyquinaldine -0.5146 0.520 -2.2467 -2.042 -0.205 -2.294 0.047 -2.184 -0.062
90 Quinaldine 0.0000 0.540 -1.6215 -1.211 -0.410 -1.687 0.065 -1.598 -0.023
91 2,4-Quinolinediol -3.3566 -6.220 -5.4693  -4.908 -0.562 -5.511 0.042 -5.570 0.101
92 Isoquinoline 0.0000 0.050 -1.6773  -1.191 -0.487 -1.578 -0.099 -1.459 -0.219
93 2-Methyl-5-butylpyridine 0.0000 1.950 -1.1127 -1.017 -0.096 -1.252 0.139 -1.075 -0.038
94 4-Methylpyrimidine 0.0000 0.542 -1.0218 -1.010 -0.012 -1.250 0.228 -1.240 0.218
95 2-Amino-4,6-dimethylpyridine -0.3534 -1.150 -2.2527 -2.272 0.020 -2.011 -0.242 -2.188 -0.064
96 1-Isoquinolinecarboxylic acid? -2.6861 -3.030  -4.1319 -4.331 0.199 -4.166 0.034 -3.739 -0.393
97 2,4-Dimethyl-6-hydroxypyrimidine -1.6716 -1.715  -3.3002 -3.380 0.080 -3.069 -0.231 -3.209 -0.091
98 7-Nitroindole? -2.5768 -0.687 -2.6590 -3.401 0.742 -3.290 0.631 -2.961 0.302
99 Acridine -1.3091 0.050 -2.6381 -2.219 -0.419 -2.296 -0.342 -2.635 -0.003
100  2-Quinoxalinol -2.8665 -3.119  -4.1639  -4.478 0314 -4.247 0.083 -4.146 -0.018
101  Indole -0.2138 0.050 -1.8463 -1.275 -0.571 -1.491 -0.355 -1.674 -0.173
102  4-Chlorotoluene 0.0000 1.485 -0.6940 -1.053 0.359 -0.679 -0.015 -0.447 -0.247
103 2-Quinolinecarboxylic acid® -2.0809 -4.220 -3.5523  -3.837 0.285 -4.318 0.766 -3.891 0.339
104  6-Isopropylquinoline 0.0000 1.480 -1.8972 -1.209 -0.688 -1.870 -0.027 -1.914 0.017
105  5-Aminoquinoline -1.0867 -2.190  -3.1130 -2.852 -0.261 -2.637 -0.476 -2.945 -0.168
106  2,6-Dimethoxypyridine 0.0000 0.090 -1.1287 -1.457 0.328 -1.246 0.118 -1.519 0.390
107  5-Nitroguinoline -1.4647 -0.690 -2.8620 -2.458 -0.404 -2.694 -0.168 -2.971 0.109
108  Methylparaben -0.7376 -2.687 -2.7400  -2.636 -0.104 -2.579 -0.161 -2.498 -0.242

2 Compounds able to intramolecularly hydrogen bond

the factor. In order to validate the final model further, a
bootstrapping validation method was used in addition to the
crossvalidation. Ten runs were chosen for the bootstrapping.
In general, the greater the number of runs the better. How-
ever, little is lost by drawing 10 bootstrap samples instead of
100 (2).

RESULTS AND DISCUSSION

CoMFA Studies

The alignment rule used in the CoMFA analysis was
based on the strategy that the first consideration for the
alignment was to emphasize that functional group which had
the greatest effect on flux. The second consideration was to
try to arrange the volume increment in the same direction. In
this way the functional group having the greatest effect on
flux for each compound in the data set can be placed in the
same position for comparisons of both Coulombic and van
der Waals interactions.

The crossvalidated 7* is defined analogously to the def-
inition of the conventional r* except that it is indicative not
of the goodness of fit but of the actual predictive perfor-
mance of the model. Table 111 lists the results of the CoMFA
studies. The crossvalidated r? value for the straight CoMFA
model is 0.484, which is about halfway between no model
and a perfect model for prediction. Usually CoMFA is de-
signed to analyze one class of compounds with similar struc-
ture. A crossvalidated r* of about 0.5 from a CoMFA anal-
ysis for a data set consisting of several classes of compounds
was encouraging enough to attempt further improvements.

In order to increase the comparability of the molecular
fields for all the conformers of interest in the CoOMFA stud-
ies, a classification by functional group was used to subdi-
vide the data set. The results from the CoMFA studies com-
bined with the technique of functional group classification
method are listed in Table III. The crossvalidated * was
increased to 0.772. The great increase in the predictive abil-
ity of combining CoMFA with the functional group classifi-
cation implies linkage between this 3-D QSTR approach and
conventional QSAR approaches such as Hansch’s fragmen-
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Table III. Comparison of the 3-D Predictive Models

Independent values

CoMFA, ring
CoMFA, CoMFA, ring indicators,
CoMFA, subgroup indicators, 100 * logMF'S,,
subgroup indicators, 100 * logMF'S,, 100 * fopexs
CoMFA indicators 100 * logMF'S; 100 * fopex 100 = [HB
PLS with crossvalid. (group = 10)
Crossvalidated 2 0.484 0.772 0.896 0.926 0.951
Optimum No. of components 6 8 2 4 6
SE of prediction 0.945 0.628 0.419 0.353 0.290
Bootstrap (runs = 10)
Bootstrapped 7 — — — — 0.980
SD for bootstrap # — — — — 0.004
Mean SE of estimate — — — — 0.183
SD for mean SE of estimate — — — — 0.066
Conventional r? 0.740 0.914 0.907 0.950 0.973
SE of estimate 0.662 0.385 0.389 0.287 0.213
F value 47.913 130.734 510.143 488.907 605.879
n, 6 8 2 4 6
n, 101 99 105 103 101

tal approach and various linear free energy relationship ap-
proaches. The classification according to functional groups
implies that each classified subgroup has some relationship
to their various physicochemical properties such as hydro-
phobicity and, also on that basis, some relationship to the
magnitude of the fragmental coefficient for prediction of
flux. It is certainly possible that even better classification
methods may exist for the data set.

Outliers from the analysis are 2,4-quinolinediol, 2,4-
dihydroxypyridine, 6-hydroxynicotinic acid, S-aminoquino-
line, phenol, and 2-quinolinecarboxylic acid. The first four
have negative residual values, indicating that the calculated
flux is faster than the experimental flux, while the others
have positive residuals, indicating that the calculated flux is

slower than the experimental flux. The reasons for these are
not easily understood but may be caused by selection of the
conformers, alignment rules, or anomalies in the transport
behavior of these compounds. The relative contributions
from the normalized coefficients of each independent vari-
able in the COMFA model combined with the functional
group classification technique are listed in Table IV.

Solubility Considerations

Thermodynamically, both a neat liquid and a saturated
solution of a solid have an activity of one, but the actual
number of molecules of interest in contact with the mem-
brane is vastly different in the two situations. Solubility has
been shown to have a great effect on membrane diffusion

Table IV. Relative Contributions of Normalized Coefficients of Independent Variables for the 3-D Predictive Models

Predictive model

CoMFA, ring CoMFA, ring indicators,
CoMFA, Subgroup indicators, 100 * MFS,,
indicators, 100 * logMFS,, 100 * fipox
CoMFA, subgroup indicators 100 * logMFS; 100 * fpex 100 = IHB
Norm. Norm. Norm. Norm.
coeff. Fraction coeff.  Fraction coeff. Fraction coeff. Fraction
CoMFA (864 variable) (steric) 2.704 0.586 0.113 0.090 0.524 0.299 0.769 0.331
CoMFA (864 variable) (electrostatic) 1.113 0.241 0.059 0.047 0.118 0.067 0.187 0.081
100 * Subgroup 1 0.245 0.053 0.147 0.117
100 * Subgroup 2 0.091 0.020 0.000 0.000
100 * Subgroup 3 0.024 0.005 0.016 0.013
100 * Subgroup 4 0.433 0.094 0.188 0.150
100 = logMFS; 0.729 0.582 0.509 0.291 0.463 0.199
100 * £« 0.469 0.268 0.543 0.234
100 * Ring System 1 0.061 0.035 0.102 0.044
100 * Ring System 2 0.004 0.002 0.023 0.010
100 * Ring System 3 0.068 0.039 0.085 0.036
IHB 0.152 0.065
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(12,18). For example, the solubility of 2-quinolinecarboxylic
acid in isopropanol is 18.44 mg/mL (logJ,, = —3.5523),
while that of 4-quinolinecarboxylic acid is 3.32 mg/mL
(logJ,, = —4.5178); the solubility of 5-nitroquinoline is 78.65
mg/mL (logJ,, = —2.8620), while that of 6-nitroquinoline is
5.69 mg/mL (log/,, = —3.6146). The solubilities for the lat-
ter two isomers differ by a factor of 14. However, CoOMFA
analysis assumes that all the compounds have the same con-
centration. Therefore the predictor variable, logMFS;, was
added to the 3-D CoMFA QSTR model.

A comparison of the results of the CoMFA model and
those of the CoMFA model plus the solubility term is listed
in Table III. After the addition of the solubility term to the
CoMFA model, the crossvalidated r? increased from 0.772 to
0.896, indicating a substantial improvement in predictive
ability. The standard error of prediction or PRESS decreased
from 0.628 to 0.419, indicating improvement of the predictive
performance. In general, the more components used in the
PLS, the lower the robustness is for the predictive model.
The optimum number of components dropped from eight to
two after adding the solubility term, indicating an increase in
the robustness of model. The F value increased from 130.743
to 510.143 and also demonstrates a more sound regression
model. The value of a conventional r* resulting from a PLS
run varies according to the number of components used.
Adding more components to a PLS run increases the con-
ventional 7 in the same manner as adding more variables to
an ordinary regression. The conventional r* here corre-
sponds to the optimum number of components resulting
from the PLS run combined with the crossvalidation. It rep-
resents the goodness of fit only for the PLS model corre-
sponding to the number of components chosen. Conven-
tional r? values from two PLS models have little compatibil-
ity if they result from a different number of components. The
same situation is applicable for the standard error of estimate
or standard deviation.

The experimental and calculated log/,; and their resid-
uals using the CoMFA model combined with the functional
group classification technique (subgroup indicators) and the
solubility term are listed in Table II. Three possible outliers
emerge from the use of this model including 4-hydroxyben-
zoic acid, 8-hydroxyquinoline, and 8-hydroxyquinaldine.
Among these three compounds, the first has a negative re-
sidual value, while the others have positive residuals. Two
phenomena which may be responsible for this need to be
taken into account. The first is that intramolecular hydrogen
bonding increases the hydrophobicity of the compound,
thereby increasing its ability to partition into the PDMS
membrane and increasing its flux. 8-Hydroxyquinoline and
8-hydroxyquinaldine can both intramolecularly hydrogen
bond and the underestimation of their flux can be explained
on this basis. The second phenomenon is intermolecular hy-
drogen bonding or dimerization of the diffusant. This behav-
ior increases the molecular volume providing a decrease in
flux, but also increases the lipophilicity of the diffusant re-
sulting in an increase in flux. The final result is dependent on
which mechanism dominates the process. The behavior of
4-hydroxybenzoic acid may be explained by this process.
The fact that these compounds are outliers may also be
caused by selection of the conformers, alignment rules, or
anomalies in the transport behavior of these compounds.
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The results of the predictive tests for the random data
sets both inside and outside the data domain from the model
of CoMFA combined with the functional group classification
technique and the solubility term are given in Table V. Only
3 of the 16 tested compounds inside the data domain have
a residual higher than 0.4 log unit. Two of these three
compounds, namely, 8-aminoquinoline and 5-chloro-8-
hydroxyquinoline, with the highest residuals have the ability
to intramolecularly hydrogen bond. Eleven of the sixteen
have a residual lower than 0.3 log unit. The predictions are
better for the compounds inside the data domain than for
those outside the data domain.

The relative contributions from the normalized coeffi-
cients of each independent variable in the CoMFA model
combined with the functional group classification technique
and the solubility term are listed in Table IV.

It may appear that the reduction of optimal number of
components from eight to two after addition of the solubility
term indicates that the information contained in the sub-
group indicators may be redundant and more uniquely de-
scribed only by the solubility term. To determine if this was
the case, a PLS run combined with crossvalidation was per-
formed using only the CoMFA descriptors and the solubility
term, without the subgroup indicators. The results show that
the crossvalidated r* decreased from 0.896 to 0.833, the stan-
dard error of predictions increased from 0.419 to 0.518, and
the optimal number of components remained 2. The compar-
ison of these results demonstrates that the inclusion of the
functional group classification is still significant.

Partition Coefficient Considerations

Membrane diffusion theory indicates that the partition
coefficient is an important parameter in determining the
magnitude of the steady-state flux (12,13). Instead of using
the partition coefficient between the PDMS membrane and
IPA itself, various hydrophobic parameters which estimate
partition coefficient were used in the correlation analysis.
This was done both because of the additivity of these pa-
rameters and because experimental determination was not
required.

There are many additive, hydrophobic parameters avail-
able, but the  and f parameters are used most frequently in
LFER studies (14,15). Both «w and f values are based on an
octanol/water solvent system. The major difference between
these hydrophobic parameters is the fragmental constant
method assigns an f value for hydrogen, while the 7 system
ignores the contribution of the hydrogen atom. Both param-
eters were used for pyridine and quinoline derivatives in the
previous LFER studies (16). Correlations of the steady-state
flux for both the f and the w parameters were poor predic-
tors, although the fragmental parameter f was slightly better.
This result suggested that the octanol/water solvent system
did not properly describe the PDMS/isopropanol partitioning
system. The major reason may be that PDMS possesses little
hydrogen bonding ability, while octanol can form hydrogen
bonds with many penetrants. Hence, the fand m parameters
were transformed into their corresponding cyclohexane/
water parameters (f.;,., and m...,) using Seiler’s I, variable
and conversion equation (23). Both f .. ...« correlated
much better with flux, with the £, .. being somewhat better.
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Table V. Prediction of PDMS Membrane Diffusion Rates for Compounds Inside and Outside the Data Domain Using the 3-D Predictive

Models
Predictive Models
CoMFA, Subgroup CoMFA, Ring Indicators, CoMFA, Ring Indicators,
Indicators, 100xlog MFS; 100xlog MFS;, 100%f . pay 100+Jog MFS;
Compounds 100+£ oy » 100%IHB
Inside Data Domain: Expt. log Pred. log].s; Residual  Pred. logfs; Residual  Pred. logf¢; Residual
]ssi
1st Random Data Set:
Benzaldehyde -1.4800 -1.3902 -0.0898 -1.3572 -0.1228 -1.2624 -0.2176
4-tert-Butylbenzoic acid -2.7588 -2.9070 0.1482 -2.5674 -0.1914 -2.6464 -0.1124
Fluoropyridine -0.8776 -0.9998 0.1222 -0.9068 0.0292 -0.8071 -0.0705
6-Methoxyquinoline -2.0969 -1.5557 -0.5412 -2.1244 0.0275 -1.9753 -0.1216
6-Nitroquinoline -3.6146 -3.5578 -0.0568 -3.7193 0.1047 -3.7289 0.1143
8-Quinolinecarboxylic acid -4.2129 -4.4556 0.2427 -4.2369 0.0240 -3.9718 -0.2411
Propiophenone -1.6300 -1.3823 -0.2500 -1.4715 -0.1585 -1.5282 -0.1018
Nicotinic acid -3.7597 -3.9069 0.1472 -3.6140 -0.1457 -3.9170 0.1573
2nd Random Data Set:
Benzoic Acid -2.3155 -2.5011 0.1856 -2.5303 0.2148 -2.5689 0.2534
2-Hydroxy-5-nitropyridine -3.7471 -3.6649 -0.0822 -3.7297 -0.0174 -3.7105 -0.0366
Phenetole -1.1100 -1.3835 -0.2735 -1.3756 0.2656 -1.2591 0.1491
2-Amino-4-methylpyridine -2.2276 -2.5664 0.3388 -2.1341 -0.0935 -2.1575 -0.0701
Quinoline -1.4903 -1.1050 -0.3853 -1.2850 -0.2053 -1.5987 0.1084
8-Aminoquinoline -2.2781 -2.9028 0.6247 -2.7771 0.4990 -2.5524 0.2743
5-Chloro-8- -3.1655 -3.9372 0.7717 -3.4510 0.2855 -3.0757 0.0898
hydroxyquinoline
6-Methoxyqunaldine -2.2467 -2.0059 -0.2408 -2.2461 -0.0004 -2.2665 0.0198
Outside Data Domain:
4-Methyl-pyrimidine -1.0218 -0.9639 -0.0579 -1.3003 0.2785 -1.4109 0.3891
2,4-Dimethyl-6-
hydroxypyrimidine -3.3002 -3.3805 0.0803 -3.0479 -0.2523 -3.2372 -0.0630
7-Nitroindole -2.6590 -3.5405 0.8815 -3.6225 0.9635 -3.2476 0.5886
Acridine -2.6381 -2.1711 -0.4670 -2.2071 -0.4310 -2.5409 -0.0972
2-Quinoxalinol -4.1639 -4.4901 0.3262 -4.2039 0.0400 -4.1862 0.0223
Indole -1.8463 -1.2149 -0.6314 -1.4524 -0.3939 -1.7147 -0.1316

Therefore f.,., was used as a predictor and added to the
QSAR model.

Comparison of the results of the CoOMFA model; of the
CoMFA model plus the solubility term, and of the CoMFA
model combined with both the solubility and the £, terms
is listed in Table III. After the addition of the f_, ., term, the
crossvalidated /* increases from 0.896 and 0.926. This has
greatly improved the predictive ability compared to the pre-
vious 3-D predictive model involving only the CoMFA and
solubility terms. The decrease in the PRESS or predictive
error from 0.419 to 0.353 also shows an obvious improve-
ment in the predictive performance. The optimum number of
components increases from two to four and the F value de-
creases slightly, from 510.143 to 488.907. These, however,
do not affect the robustness of the PLS model because an
optimum number of components of four is not large (8) and
an F value of 490 is still very large. The conventional r* is
0.950 and the standard error of the estimate is 0.287, indi-
cating excellent goodness of fit for this 3-D predictive model.

The experimental and calculated logJ; and their resid-
uals from the 3-D model using CoMFA, logMFS;, and f_;.,
(combined with the ring system indicators) are listed in Table
II. There are five possible outliers from the use of this model
including 3-aminopyridine, 4-aminoquinaldine, benzene,
7-nitroindole, and 2-quinolinecarboxylic acid. Among these
five possible outliers, the amino compounds have negative
residual values and the last three have positive deviations.

The reasons for the first three outliers in this model are not
clear yet. The deviations of 7-nitroindole and 2-quinolinecar-
boxylic acid may be caused by their intramolecular hydrogen
bonding behavior.

The resuits of the predictive tests for this model are
given in Table V. Only one compound has a residual higher
than 0.3 log unit. Eleven of the sixteen have a residual lower
than 0.2 log unit. The predictions were greatly improved for
the data inside the data domain compared with the previous
3-D model. The highest residuals are still borne by the two
compounds with the ability to intramolecularly hydrogen
bond. The predictions for the data outside the domain were
also improved overall. Some, however, became worse. The
predictive residual for 7-nitroindole, for example, increased
about 0.1 log unit. But the fact that five of the six compounds
have a residual less than 0.5 log unit and four of them have
a residual less than 0.4 log unit indicates good predictive
ability for the data outside the data domain.

The relative contributions from the normalized coeffi-
cients of each independent variable in this 3-D model includ-
ing COMFA, logMFS,, and f_,.., (combined with the ring sys-
tem indicators) are listed in Table IV.

Hydrogen Bonding Considerations

The ability of a compound to participate in intramolec-
ular hydrogen bonding has been shown to produce a signif-



Prediction of Polydimethylsiloxane Membrane Flux in Isopropanol

icant increase in membrane flux because it increases the
lipophilicity of the molecule. Many compounds, such as
8-hydroxyquinoline, 8-hydroxyquinaldine, 2-quinolinecar-
boxylic acid, and 8-aminoquinoline, with the ability to in-
tramolecularly hydrogen bond diffused significantly faster
than their predicted flux (12). It was also found in the pre-
vious 3-D models that some outliers were compounds capa-
ble of intramolecular hydrogen bonding such as 7-nitroin-
dole. Therefore, an indicator variable (IHB) for intramolec-
ular hydrogen bonding was assigned to the compounds with
this capability and added to the previous 3-D model.

The results for the final 3-D predictive model using
CoMFA, log mole fraction solubility, f.,.. (combined with
the ring system indicators), and intramolecular hydrogen
bonding terms are listed in Table III. After the addition of the
IHB indicator, the crossvalidated r? increases from 0.926 to
0.951 and the PRESS or predictive error drops from 0.353 to
0.290. The conventional 72 is 0.973 and the standard error of
the estimate is 0.213, indicating an excellent goodness of fit
for the 3-D predictive model. The optimum number of com-
ponents as a result of the crossvalidation run is six, which
does not affect the robustness of the model considering the
number of predictors used. Bootstrapping is a safeguard
against the promulgation of an artifactual, nonpredictive,
QSAR equation. The results of the bootstrap sampling dem-
onstrate a strong support of the final PLS model. The boot-
strapped #* is 0.980, which is slightly higher than the con-
ventional 2. The standard deviation of the bootstrapped r?
or the standard deviation of conventional r*’s in 10 random
drawings is 0.004. The mean of the standard error of estimate
in the 10 bootstrap samplings is 0.183, which is lower than
the 0.213, the standard error of the estimate for the PLS
equation. The standard deviation of the standard errors of
estimate generated in 10 bootstrapping runs is 0.066, which
is also very low. The difference between the statistical pa-
rameters calculated from the original data set and the aver-
age of the parameters calculated from the many bootstrap
samplings is a measure of the bias of the original calculation.
Therefore, all these verify a good correlation of the log
steady-state flux with the CoMFA fields and other selected
physicochemical terms and no artifactual PLS-overlooked
correlation.

The experimental and calculated log/; and their resid-
uals from this 3-D model using COMFA, logMFS; f.,., (com-
bined with the ring system indicators), and /HB are listed in
Table II. A plot of experimental log/; versus fitted log/;
from this 3-D model is provided in Fig. 2. Four possible
outliers emerge from the use of this model including 3-ami-
nopyridine, 2-ethylpyridine, 2-methoxypyridine, and 2-
methoxy-5-nitropyridine. Among these four possible outli-
ers, the first has a negative residual value while the last three
compounds have positive residuals. After adding the in-
tramolecular hydrogen bonding indicator, all the outliers in
the previous model are removed except for 3-aminopyridine,
which does not intramolecularly hydrogen bond. The resid-
ual values for the three new outliers (2-ethylpyridine,
2-methoxypyridine, and 2-methoxy-5-nitropyridine) in the fi-
nal model are relatively small, ranging from 0.43 to 0.53. The
presence of an ortho-substituted lipophilic group (referring
the substituted position relative to the heteroaromatic nitro-
gen) is a common characteristic of these compounds. The
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Fig. 2. Relationship between observed and calculated log/; of the
entire data set for the final 3-D predictive model involving CoMFA,
logMFS,, f, 1., (combined with the ring system indicators), and IHB.
Possible outliers: (B) 3-aminopyridine (obs. 26); (#) 2-methoxypy-
ridine (obs. 34); (88) 2-methoxy-5-nitropyridine (obs. 35); (¥) 8-hy-
droxyquinaldine (obs. 88).

steric effect of the ortho-substituted group on the hetero
nitrogen may decrease the effect of the negative partial
charge of the aromatic nitrogen, which may, in turn, increase
the membrane flux.

The results of the predictive tests for this model are
given in Table V. The highest predictive residual for com-
pounds inside the data domain is 0.2743. Twelve of the six-
teen have a residual lower than 0.2 log unit. After adding the
intramolecular hydrogen bonding indicator, the predictions
for the compounds with the ability to intramolecularly hy-
drogen bond have been greatly improved. The predictions
for the data outside the domain were also much improved,
especially for 7-nitroindole, for which the predictive residual
decreased from 0.9635 to 0.5886. The predictive residuals of
4-methylpyrimidine and indole are 0.381 and —0.1316, re-
spectively. The predictive residuals for remaining com-
pounds are less than 0.1 log unit. Thus, the final model dem-
onstrates an excellent predictive ability for the compounds
outside the data domain.

The relative contributions from the normalized coeffi-
cients of each independent variable in the final 3-D model are
listed in Table IV. After adding the IHB indicator to the pre-
dictive model, the relative importance of the CoMFA steric
and electrostatic fields still remains. Their contributions to
the model total more than 45%, with the steric field contrib-
uting 33.1% and the electrostatic field 8.1%. The contribu-
tion of the intramolecular hydrogen bonding indicator con-
tributes only 6.5%; however, it clarifies the classification of
the data set and plays an important role in increasing the
predictive ability of compounds which possess this ability.

CONCLUSION

CoMFA combined with the use of statistical methods
such as PLS shows promise in the development of a new 3-D
QSTR approach for prediction of membrane flux. The use of
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a functional group classification technique can increase the
predictive performance of COMFA. This is especially impor-
tant for this investigation, in which several classes of com-
pounds were involved in the CoMFA studies.

The combination of CoMFA with the solubility and the
partition coefficient descriptors has greatly improved the
predictive ability over the CoMFA models without these
physicochemical parameters. This implies that consider-
ations of experimental conditions and suitable parameters
describing the membrane diffusion process are necessary in
3-D QSTR development. The improvement of both predic-
tive performance and goodness of fit after the addition of an
intramolecular hydrogen bonding term indicates that some
compensation of molecular structural description for
CoMFA molecular fields is needed according to the results of
the PLS analysis. The excellent predictions of membrane
flux for the compounds both inside and outside the data
domain demonstrate that the 3-D predictive model involving
CoMFA steric and electrostatic fields, solubility and parti-
tion coefficient terms, and an intramolecular hydrogen bond-
ing indicator is a promising approach for the prediction of
membrane flux.
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